翻訳と辞書
Words near each other
・ Wełdkówko
・ Wełecz
・ Wełmice
・ Wełmin
・ Wełna, Greater Poland Voivodeship
・ Wełna, Kuyavian-Pomeranian Voivodeship
・ Wełnica, Greater Poland Voivodeship
・ Wełnica, West Pomeranian Voivodeship
・ Wełnin
・ Wełnowiec-Józefowiec
・ Wełpin
・ Wełtyń
・ Weōdmōnaþ
・ Weśrednik
・ Weyl–von Neumann theorem
Weyl−Lewis−Papapetrou coordinates
・ Weyman
・ Weyman Airpark
・ Weyman Bouchery
・ Weymann 66
・ Weymann Fabric Bodies
・ Weymann W-1
・ Weymer Creek Provincial Park
・ Weymer's crow
・ Weymeria
・ Weymontachie Airport
・ Weymouth
・ Weymouth (schooner)
・ Weymouth (unincorporated community), New Jersey
・ Weymouth and Melcombe Regis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weyl−Lewis−Papapetrou coordinates : ウィキペディア英語版
Weyl−Lewis−Papapetrou coordinates

In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, T. Lewis, and Achilles Papapetrou.
The square of the line element is of the form:
:ds^2 = -e^dt^2 + \rho^2 B^2 e^(d\phi - \omega dt)^2 + e^(d\rho^2 + dz^2)
where (''t'', ''ρ'', ''ϕ'', ''z'') are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and ''λ'', ''ν'', ''ω'', and ''B'', are unknown functions of the spatial non-angular coordinates ''ρ'' and ''z'' only. Different authors define the functions of the coordinates differently.
==See also==

*Introduction to the mathematics of general relativity
*Stress–energy tensor
*Metric tensor (general relativity)
*Relativistic angular momentum

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weyl−Lewis−Papapetrou coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.